MBA案例:大数据时代看阿里巴巴
MBA案例:大数据时代看阿里巴巴 MBAChina 去除源头污染,净化数据质量
自阿里巴巴数据委员会建立以来,数据质量就成了部门的核心工作,车品觉认为数据质量是大数据的命门,如果将大数据比作水流,“来自任何支流的数据,如果质量有问题,都会带来整个水源的污染。”由于淘宝等平台上的数据往往良莠不齐,不少数据虚假,带来很大的噪音干扰。“有时,在淘宝平台上,对于一 个人,我们会看到两个手机,一个iPad,三张信用卡,五个淘宝帐号,收集数据时,以为是多个人,但实际上就是一个人。但如果依照这个数据,商家可能就将红包给了一个不活跃的账户。”为此,阿里巴巴试图剔除虚假的数据,让收集的数据能反映真实的消费情景。比如上面的案例,就要鉴定所有这些账户、信用卡等是否为同一个人所有。再如,阿里巴巴经常要做产品界面测试,有时临时修改界面,会一下子多出一个按钮,这就会带来大量误点击操作,数据收集时,就会得到很多失真的用户行为数据。阿里巴巴的数据人员目前的工作就是要将这些失真的数据剔除,或者将数据还原到真实的场景。
打破分割,统一数据标准
统一数据标准,就是让净化后的数据流得以汇集。阿里巴巴下属各个部门业务重点不同,对数据的理解不同,因此数据标准往往各不相同,比如转化率。要将这些数据汇集成大数据之海,就必须统一标准,这也是阿里巴巴数据委员会目前重点推行的项目。
精选+加工——让数据精细化
“目前,我们需要的用户数据,平台还给不了。”阿里平台上的一个企业如是说。很多企业希望阿里巴巴能将用户属性的标签分得更细(不仅仅按男、女用户,还进一步按不同消费特点、收入细分)。小也化妆品创始人肖尚略认为,“平台数据的细分是基础,细分好,企业才能用好。”数据就像炒菜的食材,不同细致程度的食材炒出的菜,口味不一样,车品觉这么看。
如何让数据精细化?阿里巴巴根据各个商家的应用场景,将原始数据打上更细致、对商家更有参考价值的标签。以淘宝平台为例,一方面收集用户信息时,专注对商家更实用的内容,比如对于大学生用户,除了搜集他们的地址信息外,还通过其它渠道搜集其房租的租金,从而了解对方的消费水平,将这些数据提供给相应的商家。另一方面根据商家的应用情景,对数据材料做初加工。“比如,如果我们筛出一个人是否戴眼镜,戴多少度的数据,就对卖眼镜的商家起到了很大作用。”再如,如果一个人去母婴超市里面买东西,不一定能证明他有孩子,但如果这个人是女性、年纪又合适,这个人有孩子的可能性就很大。不断加入的其它证明信息,让这个消费者的数据变得越来越精细化。
在数据精细化思路下,2011年底,阿里巴巴的支付宝平台开发黄金策产品,车品觉带领团队处理了1亿多活跃的消费者数据后,拿出500个变量,试图用它们来描述消费者,最终让企业能够随时调用变量,获得用户信息,比如某一类包含使用信用卡数量和手机型号等具体信息的客户数目。
2013年,天猫开始研发适用于天猫商家的CRM系统,通过对会员标签化,让商户了解店铺会员在天猫平台的所有购物行为特点。
海纳百川,纳入更多外部数据
在阿里巴巴平台上,大多时候收集的是顾客的显性需求数据,如购买的商品和浏览等数据,但顾客在购买之前,就可能通过微博、论坛、导购网站等流露出隐性需求。仅仅做好自己的大数据是不够的,还要纳入更多外部数据。
MBA案例分析:2011年以前,阿里曾尝试通过收购掌握中国互联网的底层数据。2013年4月,阿里巴巴收购新浪微博18%的股权,获得了新浪微博几亿用户的数据足迹。5月,阿里巴巴收购高德软件28%股份,分享高德的地理位置、交通信息数据以及用户数据。而其它并购,包括对墨迹天气、友盟、美团、虾米、快的、UC浏览器,都招招不离数据。通过这些并购,阿里在试图拼出一份囊括互联网与移动互联网,涵盖用户生活方方面面的全景数据图。
加强数据安全的管理
很多淘宝卖家希望阿里巴巴能加大数据开放的步伐,对于阿里平台来说,这并不是一件容易的事情,因为这关乎商家和消费者的隐私。商家不希望竞争对手获得自己的机密信息,消费者也不希望被更多干扰。
阿里内部专门成立了一个小组,来判断数据的公开与否,把握“谁应该看什么,谁不应该看什么,谁看什么的时候只能看什么。”
组织体系支持——建立数据委员会
阿里巴巴的数据来自各个部门,无论是数据材料的质量、精细化的保证,还是数据安全,都不是单个部门能完成的,需要全局性安排,迫切需要一个上层组织结构。但是成立什么样的组织机构合适?在阿里巴巴看来,数据的工作实际上主要还是由各个部门的责任,毕竟它们把控着源头,另成立一个凌驾于各部门之上的中央数据管理机构,容易让各个部门把责任直接推卸给新机构。
2013年,阿里巴巴成立了虚拟组织——数据委员会,委员会包括底层数据负责人、支付宝商业智能负责人、无线商业智能负责人和一名数据科学家,数据委员会更多地以协调会的形式,来指导、协调各个部门形成合力,实现从大数据运营,到运营大数据的转变。
总结以上的六点,主要是1.确保数据安全,保护商家和个人的隐私2.保证数据的质量,去除虚假数据3.实现各个部门数据标准的统一4.让原始数据变得更精细化,更符合商家的应用情景5.获得外部数据6.建立数据委员会。
综上所述,想要好好利用大数据,是要有完整的体系去开发、传递、监督的。
本文地址:http://www.cj8840.cn/81022.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 931614094@qq.com 举报,一经查实,本站将立刻删除。